
2 Some more things about locally convex tvs

Definition 2.1 A subset A of a tvs is called s-bounded iff, for any open neigh-
borhood U of 0, there is a k ∈ K with A ⊂ kU .

Theorem 2.2 Compact sets are s-bounded, finite unions of s-bounded sets are s-
bounded, Cauchy sequences are s-bounded.

Proof. The proof of the first two assertions in an easy exercise (1). Now, given a
Cauchy sequence an and a zero neighborhood N , there is a starshaped zero neigh-
borhood W with W +W ⊂ N , and there is an N ∈ N with am − aN ∈ W for all
m > N . Now we can find an r > 0 with raN ∈W . Then an ∈ r−1W +W ⊂ r−1V .
The image of the first N terms is compact, hence s-bounded. 2

Sometimes, one has to extremize a functional on a compact convex subset. To
establish a general theory of the critical points in such sets let us first introduce
some abbreviation: For two points x, y of a tvs E, let [x, y] := {tx+(1−t)y|t ∈ [0, 1]}
and (x, y) := {tx+ (1− t)y|t ∈ [0, 1]}.

Definition 2.3 Let E be a locally convex tvs and K a convex subset of E. A
nonempty, convex and compact subset S of K is called face of K iff for all x, y ∈ K
we have

S ∩ (x, y) 6= ∅ ⇒ [x, y] ⊂ S.

Faces of K consisting of one element only are called extreme points of K.

Example: Given a real locally convex tvs E, a nonempty convex compact subset
K of E and an f ∈ E∗ = CL(E,R), then mK(f) := {k ∈ K|f(k) = maxx∈Kf(x)}
is a face of K.

Theorem 2.4 Each face of a nonempty compact convex subset K of a locally convex
real tvs E contains an extreme point of K.

Proof. First order the faces partially by inverse inclusion: S1 < S2 :⇔ S1 ⊃ S2.
Then use Zorn’s Lemma whose conditions are easily checked. Therefore there is
a maximal element M . If it has more then one element, x, y ∈ M , x 6= y, then
with the Separation theorem we can find an f ∈ E∗ with f(x) 6= f(y). Then
M 6= mM (f), the latter defined as in the previous example, and as mM (f) is a face,
we get a contradiction. 2

Theorem 2.5 Let E be a real locally convex tvs, let f ∈ E∗ = CL(E,R). Then
for every compact convex subset K of E, the maximum of f in K is attained at an
extreme point.

Proof. Consider the example and the preceding theorem. 2

In locally convex tvs, to a convex zero-neighborhood U one can associate a charac-
teristic continuous functional µU , the so-called Minkowski functional of U . It is
defined by

µU (V ) := inf{λ > 0| 1
λ
· v ∈ U}.

These Minkowski functionals are subadditive, as for 1
λf,

1
µg ∈ U we have also

1
λ+µ (f + g) ∈ U as a convex combination. Continuity is an easy consequence of
subadditivity. Observe that µU (x) < 1 if and only if x ∈ V .
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Theorem 2.6 (Krein-Milman Theorem) Let E be a locally convex tvs and K
a nonempty convex compact subset of E, let Ext be the set of the extreme points of
K. Then we have K = conv(Ext).

Proof. Define A := conv(Ext), we have to show K ⊂ A. W.r.o.g. assume that
0 ∈ A. Choose x ∈ E \ A, we have to show x ∈ E \ K . There is a convex zero
neighborhood U with x+2U ⊂ E\A. As 0 ∈ A, A+U is a convex zero neighborhood
containing U , and µA+U ≤ µU . Then µA+U |Rx is linear and, by the Hahn-Banach
Extension Theorem, has an extension m ∈ L(E,R) with m ≤ µU . Therefore m is
continuous. x /∈ A+ 2U implies m(x) = µA+2U (x) > 1. Now from Theorem 2.5 we
get

supp∈Km(p) = maxp∈Extm(p) ≤ maxp∈Am(p) ≤ 1 < m(x),

thus x ∈ E \K. 2

Definition 2.7 A subspace A of a vector space V is called complemented in V
iff there is another subspace B of V such that every vector v = V has a unique
decomposition v = a + b, a ∈ A, b ∈ B. A subspace G of a tvs E is called topo-
logically complemented in E if there is another subspace H of E such that the
map Φ : G ×H → E,Φ((g, h)) := g + h is a homeomorphism, i.e. if E is homeo-
morphic to the topological direct sum G⊕H. In this case we call H a topological
complement of G in E.

There is always a complement for any subspace A of a vector space V : Let B1 =
{xa} be a Hamel basis for A and B2 = {yb} be a Hamel basis for V/A. Then
choose an element zb for every equivalence class yb, and then it is straightforward
to express an arbitrary vector as a linear combination of the xa and zb and to see
that the union forms a Hamel basis, Thus one can define the complement as the
linear hull of the zb.
But the complement cannot always be chosen topological; we will see an example in
the part about Fréchet spaces. As there is a homeomorphism from G to G⊕{0} ⊂
G⊕H, a topological complemented subspace is always closed. Likewise, it is easy
to see that G is topologically complemented in E if and only if there is a continuous
projection π : E → G.

Often (e.g. in the overnext theorem and in general when dealing with fix point
theorems) graphs of continuous maps enter as a natural object to study. It is useful
to know that almost always they are closed:

Theorem 2.8 Let X be a topological space, Y a Hausdorff space, f : X → Y
continuous, then Gf := {(x, f(x))|}, as a subset of X×Y with the product topology,
is closed.

Proof. Put U := X × Y \ Gf and pick (x, y) ∈ U . Then y 6= f(x), and we
can find disjoint neighborhoods V 3 y, W 3 f(x). By continuity of F we find a
neighborhood N of X with f(N) ⊂ W , then N × V is a neighborhood of (x, y) in
X × Y disjoint from G. 2

Theorem 2.9 (Schauder’s fix point theorem) Let V be a locally convex tvs,
∅ 6= C ⊂ V compact and convex, and f : C → C continuous, then C contains a fix
point p of f , i.e. p ∈ C with f(p) = p.

Proof. Assume the contrary: that f is free of fix points. Then its graph G :=
{(x, f(x))|x ∈ C} ⊂ V × V , equipped with the subset topology of the product
topology in V × V , is compact and disjoint from the diagonal ∆ in V × V , thus
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there is a convex starshaped zero neighborhood W in V such that G +W ×W is
still disjoint from ∆ (why? Exercise(2)). Therefore, for all x ∈ C we have

f(x) /∈ x+W. (1)

Now consider the Minkowski functional µW and define a ∈ C0(V,R) by a(x) :=
max{0, 1− µW (x)}. Now choose x1, ...xn ∈ C such that {x1 +W, ...xn +W} is an
open covering of C, define ai(x) := a(x− xi) and

bi = ai/

n∑
j=1

aj .

This is well-defined as the denominator is always positive. Now consider H :=
conv{x1, ...xn} which is a subset of V homeomorphic to a compact finite-dimensional
simplex. Define g ∈ C0(K,H) by g(x) :=

∑n
i=1 bi(x) · xi. Then Brouwer’s fix point

theorem applied to g ◦ f : K → H implies that there is an p ∈ H with g(f(p)) = p.
As supp(bi) ⊂ xi +W , for every x ∈ K we have

x− g(x) =
n∑

i=1

bi(x)(x− xi),

thus x − g(x) is a convex combination of the x − xi ∈ W , so for every x ∈ C we
have x− g(x) ∈W . Applying that to x = f(p) we get

f(p) ∈ g(f(p)) +W = p+W

in contradiction to the condition 1. 2

Theorem 2.10 (Schauder reloaded) Let V be a locally convex tvs, ∅ 6= K ⊂ V
closed and convex, and f : K → K continuous and with precompact image, then
K contains a fix point p of f , i.e. p ∈ K with f(p) = p.

Proof: Exercise (3). 2

3 Metric vector spaces and Fréchet spaces

First we recall that a Fréchet space is just a locally convex complete metrizable tvs.
We want to give some equivalent condition to metrizability. To this aim, let us call
a set B of open subsets of a topological space T a local base at p ∈ T iff every
neighborhoof of p contains an element of B. Then we have the following theorem:

Theorem 3.1 If V is a Hausdorff tvs with a countable local base at 0, then there
is a compatible translation-invariant metric on V whose balls are starshaped. If
V is locally-convex, such a metric can be chosen such that it satifies the additional
condition that its balls are convex. Conversely, if V is metrizable, it has a countable
local base at 0.

Proof. The last part is trivial due to the existence of the balls with radius 1/n.
For the first statement, construct inductively a new local base B with Bn+1 +
Bn+1 +Bn+1 +Bn+1 ⊂ Bn. We will use dyadic numbers, the analogue to floating-
point decimal numbers, but for the base 2. Formally, the set D of dyadic numbers is
defined as the subset of Q consisting of numbers r =

∑∞
i=1 sn(r) ·2−n for a sequence

{sn(r)}n∈N with values in {0, 1} and with compact support, i.e. only finitely many
of its terms are nonzero. Obviously, all dyadic numbers are contained in [0, 1].
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Define D := D ∪ {1}. Now by means of D and the elements of the base we define
subsets of V . For every r ∈ D define A(r) :=

∑
i∈N sn(r) · Vn and A(1) := V .

The A(r) are well-defined as they are finite sums. Now we define the functional
p : V → R, p(v) := inf{r|v ∈ A(r)} and d(v, w) := p(v − w). This is the metric we
wanted to obtain. To prove the properties of d, we irst show

Lemma 3.2 We have A(a) +A(b) ⊂ A(a+ b) for all a, b, a+ b ∈ D.

Proof of the lemma: We use the following fact for dyadic numbers: If a, b, a+b ∈
D and M := inf{sn(a + b) 6= sn(a) + sn(b)}, then sM (a) = 0 = sM (b) and
sM (a+ b) = 1. Now, if M = ∞, i.e., if sn(a+ b) = sn(a) + sn(b) for all n ∈ N, then
of course A(a) +A(b) = A(a+ b) by definition. Otherwise, we get

A(a) ⊂
M−1∑
i=1

si(a)Vi + sM+1(a)VM+1 +
∞∑

i=M+2

si(a)Vi

Now it is easy to see that for i(1)...i(K) > J ,
∑k

j=1 Vi(j) ⊂ VJ (exercise (4)!),
thus

A(a) ⊂
M−1∑
i=1

si(a)Vi + sM+1(a)VM+1 + sM+1(a)VM+1,

and analogously

A(b) ⊂
M−1∑
i=1

si(b)Vi + sM+1(b)VM+1 + sM+1(b)VM+1.

Now as si(a+ b) = si(a) + si(b) for all i < M , we get

A(a) +A(b) ⊂
M∑
i=1

si(a+ b)Vi + VM ⊂ A(a+ b).

( 2 )

Now, if x < y, x, y ∈ D then we have

A(x) ⊂ A(x) +A(y − x) ⊂ A(y), (2)

the first inclusion being true as every A(t) contains 0 ∈ V . Now let any ε > 0 be
given, then the density of the dyadic numbers in [0, 1] implies that there are r, s ∈ D
with

p(a) < r, p(b) < s, r + s < p(a) + p(b) + ε.

Therefore p(a+b) < r+s < p(a)+p(b)+ε for all ε > 0 and therefore p(a+b) < p(a)+
p(b), which is equivalent to the triangle equality for d. As the Vn are starshaped,
we have p(−v) = p(v), which implies symmety of d. If v 6= 0, then because of
Hausdorffness there is a Vn with v /∈ Vn, and thus d(v, 0) ≤ 2−n, which implies
faithfulness of d, so d is a proper metric whose translation-invariance is trivially seen.
It generates the original topology in V : The d-balls satisfy Br(0) =

⋃
s<r A(s), so

given an n ∈ N, then Equation 2 implies that for every r < 2−n we have Bδ(0) ⊂ Vn.
As the A(r) are starshaped, so are the balls. For the locally convex case show that
the balls can be chosen to be convex: Exercise (5). Hint: Use the description of
the balls above and the ordering of the Ar! 2
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Now we will give an example of a non-metrizable tvs and a motivation of its
usefulness. Consider a nonempty open set U ⊂ Rn. Set C∞c (U,K) := {f ∈
C∞(U,K)|supp(f) compact} with the usual C∞-topology τ defined by the series of
Ci norms supremized over U . Equally, we could choose a compast exhaustion Kn

of U and consider the series of Ci seminorms supremized on Ki and the associated
topology σ.

Lemma 3.3 Given a compact set A ⊂ U , then on C∞c (A,K), the subspace topolo-
gies to τ and σ coincide.

Proof: Exercise (6) 2

As we have already seen, this topology is locally convex, metrizable, but not com-
plete. As often completeness is more important than metrizability, we will now con-
struct a sequentially complete and locally convex vector topology on C∞c (U,K) =:
D which will then turn out not to be metrizable.
For every compact A ⊂ U , denote the topology of C∞(A,K) by tA. Define tn as the
set of all convex and starshaped subsets N of D which satisfy N ⊂ C∞(A,K) ∈ tA
for all compact A. These will be a base of our neighborhoods of zero (plus the empty
set), and we define the topology t on D as arbitrary unions of {tn + d|d ∈ D}. To
prove that this defines indeed a topology, we have to show stability under finite
intersections: for two open sets U1, U2 we will show that for every x ∈ U1 ∩ U2

there is a zero-neighborhood N with x+N ⊂ U1 ∩ U2. The definition of t implies
that there are xi ∈ D and zero-neighborhoods Ni with x ∈ xi + Ni. Now choose
a compact set A s.t. C∞(A,K) 3 x1, x2, x. As the C∞(A,K) ∩ Ni are open in
C∞(A,K), we can find an r > 0 with x−xi ∈ (1− r)Ni, and as the Wi are convex,
we get

x− xi + rNi ⊂ (1− r)Ni +Ni = Ni.

Therefore x + rNi ⊂ xi + Ni ⊂ Ui, and with the definition N := r · (N1 ∩ N2) we
get x+N ⊂ U1 ∩ U2 as required.

Theorem 3.4 (D, t) is a Hausdorff tvs.

Proof. For Hausdorffness it is sufficient to find a point v such that {v} is closed.
So let v, w ∈ D be given and define Wvw := {f ∈ D : ||f ||C0 < ||v − w||C0}. This
is a convex starshaped subset whose intersection with all C∞(A,K) for compact
subsets A is open, thus it is a neighborhood of zero, and w+Wvw does not contain
v. Therefore (D, t) is Hausdorff. Continuity of the vector addition holds as, for
element U of the basis of t, the set 1

2U is a zero-neighborhood as well, and we get
(v1 + 1

2U) + (v1 + (v2 + 1
2U) ⊂ v1 + v2 + U because of convexity of U . Scalar

multiplication is continuous as, for r, s ∈ K,

rv1 − sv2 = r(v1 − v2) + (r − s)v2.

We are looking for a condition on r− s and v1−v2 for which the above is contained
in an element W of the above local basis of t. There is an ε > 0 with εv2 ∈ 1

2W .
Then with c := 1

2 (|s| + ε)−1, convexity and starshapedness of W imply that for
|r − s| < ε and v1 − v2 ∈ cW we have rv1 − sv2 ∈W . 2

Theorem 3.5 For every compact set K ⊂ U , the subspace topology of DK ⊂ (D, t)
coincides with the topology τK . The tvs (D, t) is sequentially complete.

Proof. Let V ∈ t and f ∈ DK∩V be given. By definition of t, there is a W from the
basis tn such that f+W ⊂ V , thus f+(Dk∩W ) ⊂ Dk∩V . AsDk∩W is open inDk,
it follows that Dk ∩ V ∈ τK , so τK is finer than the subspace topology. Conversely,
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suppose E ∈ τK . We have to show that there is a V ∈ t with E ⊃ DK ∩ V . By
definition of the topology τK there is a || · ||N -ball in E for some N ∈ N which is
the intersection of the corresponding || · ||N -ball in D with Dk.

For the second assertion, we want to prove first that every s-bounded subset E of
D is contained in some DK . So consider a subset E ⊂ D not contained in any DK .
Then there are fn ∈ E and points xn ∈ U without a limit point in U with fn(xn) 6=
0 ∀n ∈ N. Define W as the set of all f ∈ D with |f(xm)| < m−1|fm(xm)| for all
m ∈ N. As every K contains only finitely many of the xn, DK ∩W ∈ τK , thus W
is an element of the base tn. But as fm /∈ mW , E is not bounded. Now, as every
Cauchy sequence is s-bounded, it lies in some DK . As the subspace topology opf
the latter coincides with the complete τK topology, it has a limit. 2

Theorem 3.6 D is not metrizable.

Proof. Choose a countable compact exhaustion Kn ⊂ Kn+1 → U . As every
Dn := DKn ⊂ D is complete, it is closed according to Theorem 23 of the first part,
and it is easy to see that intD(Dn) = intD(Dn) is empty, therefore D is meager
in itself. D is sequentially complete, so if it were metrizable, it would be complete
metrizable and therefore nonmeager in itself according to Baire’s Theorem. 2

Definition 3.7 For a real number K, a metric vector space is called scalar-bounded
by K iff d(ρ · v, 0) ≤ Kρd(v, 0) for every ρ ≥ 1.

Remark. The triangle inequality implies that every Fréchet space with star-shaped
balls is scalar-bounded by 2. However, even in finite-dimensional metric vector
spaces, balls do not have to be star-shaped. As an example, consider the real line
with the metric d(r, s) := Φ(|r− s|) with Φ(x) := x for 0 ≤ x ≤ 1, Φ(x) := 1− (x−
1)/2 for 1 ≤ x ≤ 2 and Φ(x) := 1/2+(x−2)/3 for x ≥ 2. as Φ(x±y) ≤ Φ(x)+Φ(y),
the metric d satisfies the triangle inequality, but the balls with radius 1/2 ≤ r ≤ 1
are not starshaped and not even connected in this example.

Theorem 3.8 In a metric vector space with starspaped balls, every s-bounded subset
is bounded. In a normed vector space, s-bounded subsets are precisely the bounded
subsets.

Proof. In a metric vector space, for every s-bounded subset A there is a K > 0
with A ⊂ KB1(0) ⊂ B2K(0) from the above. The statement for normed vector
spaces is even easier. 2

Theorem 3.9 (1) A closed subspace of a Fréchet space resp. (complete) metric
vector space is again a Fréchet space resp. (complete) metric vector space, scalar-
bounded by the same constant.

(2) A quotient of of a Fréchet space resp. (complete) metric vector space by a
closed subspace is again a Fréchet space, scalar-bounded by the same constant.

(3) The direct sum of finitely many Fréchet spaces resp. (complete) metric vector
spaces is again a Fréchet space resp. a (complete) metric vector space, scalar-
bounded by the maximum of the bounds. Equally, countable products of Fréchet
spaces are Fréchet spaces.

Proof. (i) Restrict the metric to the subspace and consider the relative topology of
the closed subspace. Convex sets stay convex as intersected with a linear subspace.
The scalar bound is trivial.
(ii) Let us call the closed subspace U and the surrounding Fréchet space X. Define
the new metric d′ by d′(v, w) := minc∈Ud(v + c, w) = minc,d∈Ud(v + c, w + d)
(the last equation is valid because of the invariance of d under translations). This
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metric generates the quotient topology. Now for every Cauchy sequence in X/U
we have to find a Cauchy sequence of representatives in X. Thus choose a Mε ∈ N
s.t. for all m,n > M we have d′([vm], [vn]) = minc∈Ud(vm, vn + c) < ε

3 . Then
choose a m(0) > M , a representative vm(o) and a sequence of vectors cn ∈ U with
d(vm(0), vn+cn) < ε

2 . Then using the triangle inequality we see that for ṽn := vn+cn
we have d(ṽk, ṽl) < ε. Now modify the sequence of representatives successively this
way for ε = 1

n for all n ∈ N. this converges and leaves us with a Cauchy sequence
in X. For the scalar bound and for ρ ≥ 1 take c̃ := ρ · c in the definition of the
distance.
(iii) In the finite case, let d1, d2 two metrics, we choose a continuous concave function
∆ : R2 → R (e.g. x1 +x2 or

√
x2

1 + x2
2) and define the new metric d′ := ∆◦ (d1, d2).

For the scalar bound use concavity of ∆. In the countable case we have to define
a metric on F1 × F2 × ..., this can be done by d(s1, s2) :=

∑∞
i=1 ψi(di(s1i , s

2
i )) for a

supernice sequence of functions ψ.
Now the only remaining point is completeness; in the subspace case we already saw
it earlier, the product case is (almost) trivial and forms together with the second
case an easy exercise(7) 2

Theorem 3.10 (metric Hahn-Banach Theorem) Let F be a Fréchet space, G ⊂
F a subspace and λ : G→ R a continuous linear map. Then there is a continuation
of λ to a continuous linear map F → R. If we fix a Fréchet metric d with respect
to which λ is bounded on G by R, we can choose a continuation bounded by R as
well. In particular, for every vector f ∈ F , there is a continuous linear functional
λ on F with λ(f) 6= 0.

Proof. The proof is in complete analogy to the Banach case: Apply the algebraic
Theorem of Hahn-Banach p(x) = supu∈U

||l(u)||
d(u,0) · d(x, 0). 2

In all the examples seen until now the metric could be constructed by a countable
family of seminorms. This is a general feature of Fréchet spaces:

Theorem 3.11 Let F be a Fréchetable space. Then there is a N-family of contin-
uous seminorms || · ||i on F whose balls Bi

ε(x) := {y ∈ X : ||y−x||i < ε} are a basis
of the topology of F . Therefore the topology of F can be generated by the metric

Dα(f, g) :=
∞∑

i=1

αnΦ(||f − g||i) (3)

where α is an arbitrary positive sequence converging to 0, and as well by

dα(f, g) := sup
i∈N

αnΦ(||f − g||i). (4)

It can be assumed w.r.o.g. that the series of seminorms is monotonous in the sense
that for every fixed vector v ∈ F we have ||v||i ≤ ||v||i+1 for all natural i.

Proof. Choose a Fréchet metric d, consider Bd
1
i

(0) and define the seminorms as the
so-called Minkowski functionals

||v||i := inf{λ > 0| 1
λ
· v ∈ Ui}.

where we choose convex subsets Ui ⊂ Bd
1
i

(0). These Minkowski functionals are sub-

additive, as for 1
λf,

1
µg ∈ Ui we have also 1

λ+µ (f + g) ∈ Ui as a convex combination.
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Continuity is an easy consequence of subadditivity. Finally, Cauchy sequences w.r.t.
all || · ||i are Cauchy sequences for the metric. 2

It should be stated, however, that if the metric d was already given as a sum of
seminorms as in Equation (3), the Minkowski functionals will not give us back the
original seminorms.
Let us come back to our examples. Comparing Example 2 and Example 3 we notice
that in Example 2 none of the seminorms we used is a norm while in Example 3
any of the seminorms is a norm. The question could arise whether there is any
continuous norm on FN. This question is answered negatively in the following
theorem.

Theorem 3.12 The Fréchet space FN does not have a continuous norm.

Proof. Let us assume the existence of a continuous norm ν. Then we consider a
ball Bν

R(0). On one hand, this ball cannot contain any nontrivial subspace of FN, as
ν is homogeneous w.r.t. the multiplication by positive numbers. But on the other
hand, the ball is open because of continuity of ν, so it contains a finite intersection
of elements B||·||i

R (0) of the basis of the topology. But an intersection of the balls
for the seminorms || · ||i1 , ...|| · ||in

contains the subspace {x ∈ FN|x1 = ... = xm = 0}
where m = max{i1, ...in}, a contradiction. 2

Definition 3.13 A topological space T is called paracompact if and only if every
open covering of T contains a locally finte subcovering, i.e. every point of T has a
neighborhood intersecting only finitely many of the open sets of the covering.

Theorem 3.14 (by A.H. Stone, through Abraham/Marsden/Ratiu) Every
metric space is paracompact.

Proof. Let Ui, i ∈ I, be a n open covering of a metric space (X, d). Then define
Un,α := {x ∈ Uα|d(x,X \ Un) ≥ 2−n}, then the triangle inequality implies that
d(Un,α, X \ Un+1,α) ≥ 2−(n+1). Then set

Vn,α :=
⋃

β∈I:Uβ⊂Uα

Un+1,β .

Now for Uγ ⊂ Uδ we have Vn,γ ⊂ X \ Un+1,δ, thus if Uγ ⊂ Uδ or Uδ ⊂ Uγ , we have
d(Vn,γ , Vn,δ) ≥ 2−(n+1). Finally, define

Wn,α := {x ∈ X|d(x, Vn,α) < 2−(n+3)}.

Then d(Wn,α,Wn,β) ≥ 2−(n+2). Therefore for n ∈ N fixed, every point x ∈ X lies
in at most one element of {Wn,α|α ∈ A}, then for higher m > n there cannot be a
β 6= α with x ∈ Wβ,m. In the same time, d(x,X \ Uα) gives a bound of the n for
which x ∈Wα,n. Thus the family {Wα,n|α ∈ I, n ∈ N} is a locally finite refinement.
2

Often instead of with a single continuous function one deals with collections of those
(e.g., sequences). It is convenient to extend the notion of continuity to those sets
of functions:

Definition 3.15 Let X,Y be tvs. A subset A of CL(X,Y ) is called equicontin-
uous if for every neighborhood U of 0 ∈ Y there is a neighborhood of V ∈ X with
A(V ) :=

⋃
f∈A f(V ) ⊂ U .
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Theorem 3.16 (Banach-Steinhaus Theorem) Let X and Y be tvs, A a subset
of CL(X,Y ). Let B be the subset of X whose points b have s-bounded orbits Ax :=
{fx|f ∈ A}. If B is nonmeager in X, then B = X and A is equicontinuous.

Proof. We choose balanced zero-neighborhoods W,U in Y with U + U ⊂ W and
define E :=

⋂
f∈A f

−1(U). For every x ∈ B there is a K ∈ R with A(x) ∈ KU ,
therefore x ∈ KE, so

⋃
K∈N KE ⊃ B. As B is nonmeager, some NE has to be

nonmeager, and, by the bi-continuity of the scalar multiplication with N , E itself
is nonmeager. But by continuity of each f ∈ A, it is an intersection of closed sets
and therefore closed, thus ∅ 6= int(E) 3 p, so W := p−E is a neighborhood of 0 in
X, and

A(W ) = Ap−A(E) ⊂ U − U ⊂W.

Therefore A is equicontinuous. Now given a point x ∈ X and a zero neighborhood
N in Y , take a zero neighborhood M in X with A(M) ⊂ N , then by continuity
of scalar multiplication we find an r > 0 with rx ∈ M , therefore Ax ⊂ r−1N .
Therefore x has a bounded orbit, and B = X. 2

As by Baire’s Theorem, complete metrizable tvs are nonmeager in themselves, we
get as corollary

Theorem 3.17 Let X be a complete metrizable tvs and Y a tvs, let A ⊂ CL(X,Y )
such that all A-orbits are bounded. Then A is equicontinuous. 2

Exercise (8): Let F be a Fréchet space and U ⊂ F convex and open. Show that
every continuous f : U → K, where K ⊂ U is a compact set, has a fix point.

Exercise(9): Show that there is an f ∈ C0([0, 1],R) such that for all x ∈ [0, 1] =: I

f(x) =
∫ 1

0

sin(x+ f2(t))dt.

Hint: Denote the RHS by (Af)(x), show that S := {Af |f ∈ C(I)} ⊂ C(I) is
uniformally bounded and equicontinuous and that therefore S is compact. Then
apply the previous exercise.
A map f from a topological space S to a topological space T is caled open if f(U)
is open in T for every open set U in S.

Theorem 3.18 (Open mapping theorem) Let X be a complete metrizable tvs,
Y a tvs, L ∈ CL(X,Y ) and L(X) nonmeager in Y . Then L is open and surjective
and Y is complete and metrizable.

Proof. Surjectivity follows from openness as the only open subset of a tvs is the
tvs itself. Now let V be a zero neighborhood of in X. We will show that L(X) is a
zero neighborhood in Y . To this purpose, define a translation-invariant compatible
metric on X, choose r > 0 with Br(0) ⊂ V and consider, for all n ∈ N, the
neighborhoods B(n) := B2−nr(0). We will show that, for all n ∈ N

0 ∈ int(f(B(n+ 1))) ⊂ f(B(n)) ⊂ f(V ). (5)

The fact that B(n + 1) − B(n + 1) ⊂ B(n) and continuity of the vector addition
imply

f(B(n+ 1))− f(B(n+ 1)) ⊂ f(B(n+ 1))− f(B(n+ 1)) ⊂ f(B(n)),
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so for the first inclusion of sets in Equation 5 we have to show that int(f(B(n+ 1)))
is nonempty. Then we proceed as in the proof of the Banach-Steinhaus Theorem:
As B(n+1) is a zero neighborhood, f(X) =

⋃
i∈N if(B(n+1)), and therefore there

is a nonmeager if(B(n + 1)). Now, as scalar multiplication is a homeomorphism,
f(B(n+ 1)) is nonmeager itself, thus its closure has nonempty interior.
For the second inclusion we choose inductively points yi ∈ f(B(i)) using that each
f(B(n)) is a zero neighborhood, such that we can choose a point pn+1 from the
nonempty (yn − f(B(n+ 1))) ∩ f(B(n)). Then we define yn+1 = yn − pn+1 ∈
f(B(n+ 1))) ∩ (yn − f(B(n))). If we choose some preimages xn ∈ B(n) of the pn

then d(xn, 0) < 2−nr for all n ∈ N, thus
∑∞

i=1 xn =: x exists as the partial sums
form a Cauchy sequence, and d(x, 0) < r, so x ∈ V . Now

f(x) = f( lim
n→∞

n∑
i=1

xi) = lim
n→∞

n∑
i=1

f(xi) = lim
n→∞

n∑
i=1

(yi−yi+1) = y1−limn→∞yn = y1

by continuity and linearity of f . This shows the second inclusion for n = 1 (and
the other cases by B(n+ 1) ⊂ B(n)) and thus the openness of f .
Now by Theorem 3.9 by closedness of the kernel K of f it is obvious that X/N
with the quotient topology is a complete metrizable tvs. Finally, the openness of f
implies easily a homeomorphism between X/N and Y . 2

Again with Baire’s Theorem we get as a corollary:

Theorem 3.19 Let X and Y be complete metrizable tvs and L ∈ CL(X,Y ) be
surjective, then L is open.

Theorem 3.20 Let F be a vector space and t1, t2 two Fréchetable topologies on
them. If t1 is finer than t2, then they are equal. 2

Example: Hamilton ([?]) gives an example of a closed subspace of a Fréchet space
which is not topologically complemented. So take F := C∞([0, 1]) which contains
the space G of 1-periodic real functions on the real line, C∞1 (R) by the restriction
ρ on the unit interval. If we define

p : C∞([0, 1]) → RN, f 7→ {Djf(2π)−Djf(0)}j∈N

we get the short exact sequence

{0} → C∞1 (R) →ρ C∞([0, 1]) →p RN → {0}

Thus the quotient of C∞([0, 1]) by C∞1 (R) is homeomorphic to RN. As the latter
one does not have any continuous norm, there cannot be a continuous linear iso-
morphism between RN and any closed subspace of F . Therefore the above sequence
does not split, and G is not topologically complemented in F .

This behaviour is not exceptional which is shown by the following theorem we quote
from Köthe’s book:

Theorem 3.21 (cf. [?], p. 435) Let F be a Fréchet space with a continuous norm
which is not Banach. Then there is a closed subspace H ⊂ F with F/H ∼= RN, thus
H is not topologically complemented in F .

But at least simple subspaces of tvs are topologically complemented:
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Theorem 3.22 Let V be a Hausdorff tvs. Then
(1) Every finite-dimensional subspace of V is closed.
(2) Every closed subspace G ⊂ V with codim(G) = dim(V/G) <∞ is topologi-

cally complemented in V (by each of its algebraic complements).
(3) If V is locally convex, every finite-dimensional subspace of F is topologically

complemented.
(4) If V is complete and metrizable, every linear isomorphism between the direct

sum of two closed subspaces and F , G⊕H → F , is a homeomorphism.

Proof. The first part is only a rewording of a result we have seen already. For
the second part, take any algebraic complement C of G, it is finite-dimensional and
therefore closed. The projection P of V onto C with kernel G is the composition
of the quotient map q : V → V/G, the linear bijection B : V/G → C between
vector spaces linearly homeomorphic to a Kn and the imbedding C → V , therefore
it is continuous. Therefore C is a topological complement. The third part can be
proven by choosing a basis ai for the subspace S, then by Hahn-Banach extend the
associated linear functionals to Ai ∈ CL(V,R) and then to define C :=

⋂n
i=1 ker(Ai)

as a complementary subspace. (4) is an exercise (10). 2

Theorem 3.23 (Meise/Vogt) Let F be a Fréchetable space, let (ei)i∈N be a count-
able topological basis for F , let (|| · ||i)i∈N be a monotonous series of seminorms
generating the topology of F (e.g. the sequence of Minkowski functionals). Then
for every m ∈ N there is an n ∈ N and a C > 0 such that for every v ∈ F we have

sup
k∈N

||
k∑

i=1

vi · ei||m ≤ C||v||n,

where vi := ξi(v) are the unique coefficients of v w.r.t. the basis ei.

Proof. We define, for all natural n,

||v||′n := sup
k∈N

||
k∑

i=1

viei||n.

Obviously, || · ||′n defines a monotonous sequence of seminorms on F with || · ||′n ≥
|| · ||n, thus the locally convex metrizable topology t2 defined by the sequence of the
|| · ||′n is finer than the original topology t1 on F . Now we show that t is a complete
topology on F , the rest follows by the corollary of the open mapping theorem. Our
basic estimate is the following: for every x ∈ F and every n, k ∈ N we have

|xk| · ||ek||n = ||xk · ek||n = ||
k∑

i=1

xi · ei −
k−1∑
i=1

xi · ei||n

≤ ||
k∑

i=1

xi · ei||+ ||
k−1∑
i=1

xi · ei||

≤ 2 sup
k∈N

(||
k∑

i=1

xi · ei||n) = 2||x||′n.

Now let vj be a t2-Cauchy sequence in F , then first we want to prove that, for all
k ∈ N, the sequence j 7→ ξk(vj) is a Cauchy sequence in K . For this, choose an n ∈ N
with ||ek||n > 0, then the above basic estimate |ξk(vν)−ξk(vµ)|·||ek||n ≤ 2||vν−vµ||′n
implies that j 7→ ξk(vj) is a Cauchy sequence, and, by completeness of K , has a
unique limit xk. It remains to show that x := liml→∞

∑l
i=1 xjej exists and that
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limj→∞ vj = v in the topology t2. To this purpose, let n ∈ N be fixed until further
notice. As for all i ∈ N, the sequence j 7→ ξi(vj) converges, for all k ∈ N there is a
ν ∈ N such that for all µ > ν we have

||
k∑

i=1

ξi(vµ)ei −
k∑

i=1

xiei||n ≤ ε. (6)

Thus for all k, p ∈ N we have

||
k+p∑

i=k+1

xiei||n = || −
k+p∑
i=1

ξi(vν)ei +
k+p∑
i=1

xiei −
k∑

i=1

xiei +
k+p∑
i=1

ξi(vν)ei||n

≤ ||
k+p∑
i=1

xiei −
k+p∑
i=1

ξi(vν)ei||n + ||
k∑

i=1

xiei −
k∑

i=1

ξi(vν)ei||n + ||
k+p∑

i=k+1

ξi(vν)ei||n

≤ 2ε+ 2||
k+p∑

i=k+1

ξi(vν)ei||n.

As the series j 7→
∑j

i=1 ξj(vν)ei converges to vν and as all of this holds for an
arbitrary n ∈ N, we have that j →

∑j
i=1 xiei is a t1-Cauchy sequence and converges

therefore to, say, x, whose coefficients in turn are given uniquely by xi as the ei

form a basis. Then the t2-convergence of j → vj to x is implied by Equation 6.
2

As a corollary, we obtain

Theorem 3.24 Every countable topological basis of a Fréchet space is continuous
(and therefore Schauder).

We have seen in the preceeding chapter that for a continuous function f between
Hausdorff tvs, a necessary condition for f to be continuous is the graph Gf to be
closed. Now in closed metrizable tvs this condition is also sufficient for linear maps:

Theorem 3.25 (Closed Graph Theorem) Let F and H are complete metriz-
able tvs. A linear map L : F → H is continuous if and only if its graph G := GL is
closed.

Proof. First we infer from Theorem 3.9 that for dF resp. dH being a compatible
metric in F resp. H, the metric sum dF +dH is a compatible metric for the product
topology on F ×H and the component-wise addition and scalar multiplication are
continuous. As L is linear, its graph G is a linear subspace of F × H. If it is
closed, Theorem 23 of the first part tells us that it is complete, and Theorem 3.9
tells us that it is metrizable. Now let pri, i = 1, 2 be the projections of F × H
onto its components. Then p := pr1|G is a continuous linear bijective map from the
complete metrizable tvs G to the complete metrizable tvs F . The open mapping
theorem implies that p is open, thus p−1 : F → G is continuous, thus L = pr2 ◦ p−1

is continuous. 2

Definition 3.26 Let F be a Fréchet space, let p be a seminorm on F . Then the
local Banach space to p is defined as Fp := (E/N(p), p)̂ for N(p) the null space
of p andˆ the completion.

Finally we present one of the most important fix point theorems in partial differen-
tial equations:
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Theorem 3.27 (Banach’s fix point Theorem) Let (X, d) a complete metric space
and f : X → X a contraction with contraction factor ρ < 1. Then f has a unique
fix point xf in X. It is the limit of the recursive sequence x0 ∈ X arbitrary,
xn+1 = f(xn). The distance to the solution decreases like

d(xn, xf ) ≤ ρn

1− ρ
d(x0, x1).

Exercise (11): Please everyone of You look for a proof in the literature or, better
even, prove it Yourself, as this theorem is a cornerstone of analysis.
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